Shuffled Graph Classification: Theory and Connectome Applications
نویسندگان
چکیده
We develop a formalism to address statistical pattern recognition of graph valued data. Of particular interest is the case of all graphs having the same number of uniquely labeled vertices. When the vertex labels are latent, such graphs are called shuffled graphs. Our formalism provides insight to trivially answer a number of open statistical questions including: (i) under what conditions does shuffling the vertices degrade classification performance and (ii) do universally consistent graph classifiers exist? The answers to these questions lead to practical heuristic algorithms with state-of-the-art finite sample performance, in agreement with our theoretical asymptotics.
منابع مشابه
Pattern Discovery of ADHD Disorder Using Graph Theory on Task-Free fMRI Data
Study of neural correlates of ADHD could potentially help us to develop an automated diagnosis system. In 2011, a rich and heterogeneous neuroimaging dataset was provided by the ADHD-200 consortium to be used for this purpose. Considering the fact that the brain functional connectome in ADHD subjects is altered compared to healthy controls; we hypothesized that local and global parameters of fu...
متن کاملClassification of encrypted traffic for applications based on statistical features
Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...
متن کاملGraph theory analysis of complex brain networks: new concepts in brain mapping applied to neurosurgery.
Neuroanatomy has entered a new era, culminating in the search for the connectome, otherwise known as the brain's wiring diagram. While this approach has led to landmark discoveries in neuroscience, potential neurosurgical applications and collaborations have been lagging. In this article, the authors describe the ideas and concepts behind the connectome and its analysis with graph theory. Follo...
متن کاملMatched Filters for Noisy Induced Subgraph Detection
We consider the problem of finding the vertex correspondence between two graphs with different number of vertices where the smaller graph is still potentially large. We propose a solution to this problem via a graph matching matched filter: padding the smaller graph in different ways and then using graph matching methods to align it to the larger network. Under a statistical model for correlate...
متن کاملRiccati-Regularized Precision Matrices for Neuroimaging
The introduction of graph theory in neuroimaging has provided invaluable tools for the study of brain connectivity. These methods require the definition of a graph, which is typically derived by estimating the effective connectivity between brain regions through the optimization of an ill-posed inverse problem. Considerable efforts have been devoted to the development of methods extracting spar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Classification
دوره 32 شماره
صفحات -
تاریخ انتشار 2015